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Abstract

Following the scheme developed by Engquist and Majda [Math Comp. 31 (1977) 629] for first-order systems, we

derive a theoretical perfectly absorbing nonlocal boundary condition for Maxwell�s equations at a flat outer boundary.

This condition can be approximated to any desired order by a differential equation on the boundary, and a sequence of

such equations is developed here in terms of tangential derivatives of the electromagnetic fields at the boundary. The

resulting set of equations, comprising Maxwell�s equations in the interior together with any of the local boundary

conditions, is shown to admit no exponentially growing solutions, and questions of their well-posedness are addressed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In their 1977 paper [1] entitled ‘‘Absorbing Boundary Conditions for the Numerical Simulation of

Waves’’, Engquist and Majda construct procedures for minimizing the magnitude of waves reflected from

the boundaries of a finite computational domain. The local boundary conditions that they derive are

differential equations on the boundary that provide for the stability of discretized forms of the time-
dependent wave equation inside the domain in the sense that they admit no exponentially growing

solutions. Their analysis includes both the scalar second-order wave equation and first-order systems that

are strictly hyperbolic (i.e., having no zero eigenvalues).

Maxwell�s equations written as a first-order system are not strictly hyperbolic. However, plane-wave

solutions for the fields can be decomposed into two sets of components that individually satisfy the scalar

wave equation. In the present paper a method is presented for extending the first-order system approach to

include the time-dependent form of Maxwell�s equations, and vector absorbing boundary conditions of

arbitrarily high order are constructed. Resolution of these conditions into their scalar wave components is
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found to recover the appropriate results, and the well-posedness of the mixed initial boundary value

problems closed by these conditions is examined.

The need for absorbing boundary conditions of higher order has emerged from the recent development

of numerical methods that employ high-order representations of the field variables inside each computa-

tional cell of a space-filling grid [3,4]. In contrast to methods that allow for no variation within a cell, these

methods have been shown to preserve both the amplitude and phase of propagating waves to high accuracy

over many wavelengths. In particular, low-order methods damp the waves as they propagate to and from

the outer boundaries of a computational domain, thereby minimizing the effects of the numerically reflected
return. High-order methods suffer nearly the full effect of these reflections.

Mur [5] applied the scalar wave results of Engquist and Majda in the special context of staggered-grid

Cartesian simulation of Maxwell�s equations (an integration method known as the Yee scheme [6]). Taflove

[7] and others successfully exploited these boundary conditions for a variety of finite-difference time domain

(FDTD) simulations. However, currently these boundary conditions have been supplanted in FDTD

simulations by surrounding the domain of interest with an absorbing layer that has special properties,

following the work of Berenger [8].

Berenger has taken a different approach to minimizing reflections from the computational boundary. He
regards Maxwell�s equations as a degenerate form of a more general set of equations having additional

degrees of freedom that are only active outside the original computational domain. By choosing the pa-

rameters of the external medium appropriately, direct reflection from the interface between this medium

and the interior Maxwell domain is eliminated. Further, exponential damping of the waves in this medium

is achieved. A finite, but exponentially small, reflection from the outer computational boundary of this

‘‘perfectly matched’’ layer, or PML, is all that remains. While this approach has proven quite effective for

FDTD, Abarbanel and Gottlieb [9] have shown that the resulting discretized system suffers from both

exponential and long-term instabilities.
Various approaches to remove the effects of the instabilities numerically, or to replace the original PML

with a different kind of strongly absorbing layer, are being actively investigated. In the meanwhile, one can

use the extended Engquist–Majda boundary conditions developed here as a viable alternative. They pro-

duce reflections that are algebraically small, going as ½ð1� cosðhÞÞ=ð1þ cosðhÞÞ�mþ1
for the mth-order

condition, where h is the angle of incidence on the boundary.
2. Formulation

Maxwell�s equations relating the time development of the electric field E and the magnetic field H in

vacuum can be written in an appropriately scaled form as

oH=ot ¼ �r� E; ð2:1aÞ
r �H ¼ 0; ð2:1bÞ
oE=ot ¼ r�H; ð2:2aÞ
r � E ¼ 0: ð2:2bÞ

To make contact with standard SI units, one can consider time to be measured in distance units of ct,
where c is the speed of light, and E to be measured in volts per meter divided by Z0, the impedance of free
space. The divergence conditions (2.1b), (2.2b) can be regarded as initial conditions on the fields, since the

time derivative of either divergence vanishes by reason of Eqs. (2.1a), (2.2a).
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Adopting the notation conventions of Engquist and Majda [1], the Maxwell system (2.1a), (2.2a) is recast

in the form

ou=ot ¼ ðA1 o=oxþ A2 o=oy þ A3 o=ozÞu; ð2:3Þ

where u ¼ ðH;EÞT is a column vector of six unknowns, and each Ai is a 6� 6 singular matrix with constant

elements. (In what follows, we shall continue to use bold print to denote physical vectors.)

The plane wave solutions to these equations have E �H ¼ 0, and both vectors are orthogonal to the

direction of propagation of the wave. Along a given direction, there are two eigenvalues of the system

corresponding to positively propagating waves (with unit wavespeed), two eigenvalues corresponding to
waves propagating in the opposite direction, and two zero eigenvalues. It is these zero eigenvalues that

prevent the direct application of the method developed by Engquist and Majda for first-order systems to

Maxwell�s equations.
A formal solution for this difficulty is to modify the equations appropriately so that all eigenvalues are

real and nonzero. That is the approach adopted here. The resulting system can then be transformed to

isolate a subspace corresponding to waves incoming along a given direction. Requiring that the compo-

nents of u corresponding to this subspace vanish at the boundary leads to a nonlocal boundary condition

that is theoretically perfectly absorbing for the modified system [1]. However, for this procedure to yield a
valid result for the unmodified system, the transformation must at least remain well defined in the limit that

the modification is removed.

Finally, one can approximate the nonlocal condition using local derivatives of u at the boundary. As

Engquist and Majda demonstrate, not every consistent approximation leads to a well-posed system of

differential equations for the finite domain. In the last three sections of this paper an infinite sequence of

such approximations is constructed that satisfies this criterion, and the behavior of a discrete implemen-

tation is explored for a spherical test case using the Runge–Kutta discontinuous Galerkin approach [3] to

provide the high-order representation.
3. The modified equations

As a convenience for later developments, we shall replace E and H as the unknowns in Eq. (2.3) by the

characteristic combinations corresponding to waves propagating parallel to the unit normal n at the outer

boundary of the computational domain:

p ¼ n� ½Eþ n�H�; ð3:1aÞ
q ¼ n� ½E� n�H�: ð3:1bÞ

These will be supplemented by the components of the fields along n

h ¼ n �H; ð3:2aÞ
e ¼ n � E: ð3:2bÞ

Taking, e.g., n parallel to x, one can verify that the two components of p are eigenvectors of A1 with ei-

genvalue +1, while the components of q are eigenvectors with eigenvalue )1. Note that there are still only

six unknowns, because p � n ¼ q � n ¼ 0.

The focus of this development is to derive boundary conditions suitable for application in cell-based

numerical simulations, where one is free to take each cell at the outer boundary to have a simple shape with
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a single, flat facet at the boundary. In that case, the direction of n is constant on this boundary, and

Maxwell�s equations take the form:

op=ot � op=ox� ðgo=oy þ fo=ozÞhþ n� ðgo=oy þ fo=ozÞe ¼ 0; ð3:3Þ
oq=ot þ oq=ox� ðgo=oy þ fo=ozÞh� n� ðgo=oy þ fo=ozÞe ¼ 0; ð3:4Þ
oh=ot � 1

2
o½g � ðpþ qÞ�=oy � 1

2
o½f � ðpþ qÞ�=oz ¼ 0; ð3:5Þ

oe=ot þ 1

2
o½f � ðp� qÞ�=oy � 1

2
o½g � ðp� qÞ�=oz ¼ 0; ð3:6Þ

where g and f are unit vectors along the y and z axes, respectively, in a right-handed Cartesian system

ðn� g ¼ fÞ. In addition, one imposes the divergence conditions r �H ¼ 0 ¼ r � E within the cell, which

can be written in terms of the new variables as

oh=ox� 1

2
o½g � ðp� qÞ�=oy � 1

2
o½f � ðp� qÞ�=oz ¼ 0; ð3:7Þ

oe=oxþ 1

2
o½f � ðpþ qÞ�=oy � 1

2
o½g � ðpþ qÞ�=oz ¼ 0: ð3:8Þ

The fact that oh=ox and oe=ox do not appear in Eqs. (3.3)–(3.6) is a reflection of the singularity of the

matrix A1. To remove this singularity, we shall modify Eqs. (3.5) and (3.6) by subtracting the divergence

conditions, each multiplied by a scalar constant e:

oh=ot � eoh=ox� 1

2
g � o½ð1� eÞpþ ð1þ eÞq�=oy � 1

2
f � o½ð1� eÞpþ ð1þ eÞq�=oz ¼ 0; ð3:9Þ

oe=ot � eoe=oxþ 1

2
f � o½ð1� eÞp� ð1þ eÞq�=oy � 1

2
g � o½ð1� eÞp� ð1þ eÞq�=oz ¼ 0: ð3:10Þ

These two equations now represent a weaker set of requirements than (3.5)–(3.8), admitting solutions that

are unphysical, as well as including all the solutions of the original set. The matrix coefficient of o=ox in this

new set of Eqs. (3.3), (3.4), (3.9) and (3.10) is nonsingular so long as e 6¼ 0, the two zero eigenvalues being

replaced by e, while the other four eigenvalues are unchanged at� 1. Gustafsson [18] used a similar

modification in treating the scalar wave equation as a first-order system, where a zero eigenvalue also
appears.

One can now employ the same procedure as Engquist and Majda [1], Fourier transforming these

equations with respect to y, z, and t, and solving the resultant set for ou=ox, where u is now the column

vector ðp; q; h; eÞT:

op=ox ¼ ixp� ikhþ ðn� ikÞe; ð3:11Þ
oq=ox ¼ �ixqþ ikhþ ðn� ikÞe; ð3:12Þ

oh=ox ¼ cixhþ 1

2
ik � ½ð1� cÞp� ð1þ cÞq�; ð3:13Þ

oe=ox ¼ cixe� 1

2
ðn� ikÞ � ½ð1� cÞpþ ð1þ cÞq�: ð3:14Þ
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Here o=ot has been replaced by ix, o=oy by g � ik, and o=oz by f � ik. The vector k lies in the plane per-

pendicular to n; it will be useful to define the unit vector parallel to k as a and the unit vector n� a as b. We

have also put c ¼ 1=e for convenience.
Taking scalar products of (3.11) and (3.12) with a and b, one finds that Eqs. (3.11)–(3.14) can be sep-

arated into two simpler sets of three. Define the three-component column vector aw ¼ ða � p; a � q; hÞT, and
the column vector bw ¼ ðb � p; b � q; eÞT. Then the two sets can be written as

oðawÞ=ox ¼ iAaw; ð3:15Þ
oðbwÞ=ox ¼ iBbw; ð3:16Þ

where the matrices A and B are given by

A ¼
x 0 �k
0 �x k

1
2
kð1� cÞ � 1

2
kð1þ cÞ cx

ð3:17aÞ

and

B ¼
x 0 k
0 �x k

� 1
2
kð1� cÞ � 1

2
kð1þ cÞ cx

: ð3:17bÞ

The eigenvalues for these two matrices are identical, being given by

k1 ¼
pðx2 � k2Þ; ð3:18aÞ
k2 ¼ �pðx2 � k2Þ; ð3:18bÞ
k3 ¼ cx: ð3:18cÞ

To diagonalize the two systems of equations, one needs the left eigenvectors for each matrix. In both

cases, the elements of these eigenvectors can be written simply in terms of the following ratios:

g ¼ ð1� cÞ=ð1þ cÞ; ð3:19aÞ
r ¼ ðx� k1Þ=ðxþ k1Þ; ð3:19bÞ
d ¼ �2ðx� k1Þ=kð1� cÞ: ð3:19cÞ

Using this notation, the left eigenvectors for A are

‘1 ¼ ½1; r=g; d�; ð3:20aÞ
‘2 ¼ ½rg; 1; dg�; ð3:20bÞ
‘3 ¼ ½�k=2x;�k=2x; 1�; ð3:20cÞ

while those for B are

l
1
¼ ½1;�r=g;�d�; ð3:21aÞ
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l
2
¼ ½�rg; 1; dg�; ð3:21bÞ
l
3
¼ ½k=2x;�k=2x; 1�: ð3:21cÞ

Using these eigenvectors, one can show, e.g., that

oð‘1 � awÞ=ox ¼ ik1ð‘1 � awÞ; ð3:22aÞ
oðl
1
� bwÞ=ox ¼ ik1ðl1

� bwÞ: ð3:22bÞ

Now, following the analysis by Engquist and Majda [1], these two linear combinations, ð‘1 � awÞ and

ðl
1
� bwÞ, represent the incoming waves; requiring that they vanish at the outer boundary gives the theo-

retical nonlocal absorbing boundary conditions:

ða � pÞ þ r=gða � qÞ þ dh ¼ 0; ð3:23Þ
ðb � pÞ � r=gðb � qÞ � de ¼ 0: ð3:24Þ

These conditions apply, of course, to the set of equations that incorporate the weaker relations (3.9) and

(3.10), rather than (3.5) and (3.6). However, these weaker relations can be made to approach (3.5) and (3.6)

in the limit of large c, at least in the sense of singular perturbation. And in this limit, the conditions (3.23)
and (3.24) remain well-defined, approaching the form:

ða � pÞ � rða � qÞ ¼ 0; ð3:25Þ
ðb � pÞ þ rðb � qÞ ¼ 0: ð3:26Þ

Substituting for (a � q) in terms of (a � p) and h from the Fourier transform of Eq. (3.5), and similarly for

(b � q) in terms of (b � p) and e from the transform of Eq. (3.6), one finds after some algebra:

ða � pÞ ¼ k�1ðx� k1Þh; ð3:27Þ
ðb � pÞ ¼ �k�1ðx� k1Þe: ð3:28Þ

Recalling that a and b are orthogonal unit vectors in the plane perpendicular to n, one can combine these
two scalar relations to give

p ¼ �k�2ðix� ik1Þ½ikh� ðn� ikÞe�; ð3:29Þ

where the imaginary unit has been restored to the expression in order make the mapping back to derivatives

more transparent. The theoretical perfectly absorbing nonlocal boundary condition can thus be written in
terms of pseudo-differential operators as

ðo2=oy2 þ o2oz2Þp ¼ �fo=ot �p½o2=ot2 � ðo2=oy2 þ o2=oz2Þ�g½n� ðn�rÞhþ ðn�rÞe�: ð3:30Þ

Since the operator ðo2=oy2 þ o2oz2Þ is just the divergence in the tangent plane at the outer boundary, it will

be denoted as r2
t in the remainder of this paper.

A result equivalent to Eq. (3.30) has been obtained by Hagstrom [10] as part of a general investigation of

absorbing boundary conditions. In our notation, his form of the absorbing boundary condition reads

2op=ot � fo=ot �p½o2=ot2 � ðo2=oy2 þ o2=oz2Þ�gpþ n� ðn�rÞhþ ðn�rÞe ¼ 0: ð3:31Þ
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The equivalence follows in a straightforward way by making use of the fact that p satisfies the scalar wave

equation, r2
t p ¼ ðo2=ot2 � o2=ox2Þp ¼ ðo=ot � o=oxÞðo=ot þ o=oxÞp, and noting from Eq. (3.3) that

n� ðn�rÞhþ ðn�rÞe ¼ �ðo=ot � o=oxÞp.
4. The boundary conditions

4.1. The first three ABC’s

To obtain approximate local absorbing boundary conditions from any of these forms, the eigenvalue k1
can be approximated by local derivative operations, as in the Engquist–Majda development [1]. Expanding

k1 for k small compared to x in (3.29), one finds to lowest order k1 � x, which gives

p ¼ 0 ðfirst approximationÞ: ð4:1Þ
This vanishing of the incoming characteristic combination of E and H is the boundary condition that has

been implemented in most finite-volume simulations of Maxwell�s equations [11]. It is a natural condition to

apply when the fields are taken as constant inside the finite-volume cell. The magnitude of its plane wave

reflection coefficient is ð1� cosðhÞÞ=ð1þ cosðhÞÞ.
If one keeps the first nonvanishing term in k2 in the expansion of k1, namely putting k1 � x� k2=2x, one

obtains

ixp ¼ 1

2
½ikh� ðn� ikÞe� ðsecond approximationÞ: ð4:2Þ

In terms of derivatives, the second approximation takes the form

op=ot ¼ � 1

2
½n� ðn�rÞhþ ðn�rÞe�; ð4:3Þ

which gives a reflection coefficient of magnitude ð1� cosðhÞÞ2=ð1þ cos hÞ2 for both TE (n � E ¼ 0) and TM

(n �H ¼ 0) waves. It reduces exactly to the Engquist–Majda scalar-wave second approximation [1] in both
cases.

To obtain the third approximation for the vector system, the root k1 must be expressed to higher order in

the ratio k=x. As Engquist and Majda note in [1], simple Taylor expansion of the square root does not lead

to a stable scheme. However, one can make use of their Pade� approximation

p½1� ðk=xÞ2� � 1� ðk=xÞ2=½2� 1

2
ðk=xÞ2� þOððj=xÞ6Þ ð4:4Þ

to construct a third vector absorbing boundary condition. This gives

x2½2� 1

2
ðk=xÞ2�p ¼ �iðxÞ½ikh� ðn� ikÞe�; ð4:5Þ

which can be mapped to the differential equation

2o2p=ot2 � 1

2
r2

t p ¼ �o=ot½n� ðn�rÞhþ ðn�rÞe�: ð4:6Þ

Again, this agrees with the Engquist–Majda result [1]. One can recast (4.6) as

o=otfop=ot þ 1

2
½n� n�rÞhþ ðn�rÞe�g ¼ 1

4
r2

t p; ð4:7Þ

which extends condition (4.3) in a natural way.
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4.2. The infinite sequence of ABC’s

The form of the three conditions (4.1), (4.3) and (4.7) is suggestive of a pattern that can be extended to

arbitrary order. One can regard the second-order Pade� approximation to
pð1þ xÞ as one step in the in-

finite ladder of approximations generated by the continued-fraction expansion of the square root:pð1þ xÞ ¼ 1þ x=½2þ x=ð2þ � � �Þ�.
At the mth stage, this fraction can be rationalized to give

pð1þ xÞ ¼ 1þ 1

2
xðCm=Cmþ1Þ þOðjxjmþ1Þ; ð4:8Þ

where

Cm ¼ Cm�1 þ
1

4
xCm�2; ð4:9Þ

and

C0 ¼ 0; C1 ¼ 1: ð4:10Þ

The absorbing boundary condition generated at this stage can be written as

xCmþ1p ¼ 1

2
Cm½kh� ðn� kÞe�; ð4:11Þ

and transformed into derivatives as before, putting x ¼ �ðk=xÞ2.
The solution to the recursion relation (4.9) can be written in closed form as a polynomial in x. Using the

symbol ðmjjÞ for the binomial coefficient ‘‘m choose j’’ ¼m!/j! ðm� jÞ!, this polynomial takes the form

CmðxÞ ¼
X

ðm� j� 1jjÞ 1

4
x

� �j

; ð4:12Þ

where the sum runs from j ¼ 0 to j ¼ 1
2
ðm� 1Þ for m odd and to ð1

2
mÞ � 1 for m even.

With the aid of this expression for Cm, the differential equation corresponding to Eq. (4.11) can be

written down explicitly. Denoting

s ¼ 1

2
½n� ðn�rÞðn �HÞ þ ðn�rÞðn � EÞ�; ð4:13Þ

this differential equation takes the form

X
� 1

4
r2

t

� �j
ðm� jjjÞðo=otÞm�2j

pþ ðm� j� 1jjÞðo=otÞm�2j�1
s

n o
¼ 0: ðABCÞm

Here the condition p ¼ 0 has been designated as ðABCÞ0, and we have used the fact that ðm� jjjÞ vanishes
for 1

2
m < j < m to combine the two summations with a single upper limit ½1

2
m�, where ½x� denotes the largest

integer in x.

Engquist and Majda in [2] used a very similar technique to the above to construct an infinite sequence of

boundary conditions for the scalar wave equation, and several subsequent authors have explored alter-

native sequences chosen to minimize scalar-wave reflection according to different criteria. Higdon [12,13],
Halpern and Trefethen [14], and Zhang [15] provide detailed examples of this kind. It appears that the

explicit form of the conditions above for Maxwell�s equations is exhibited here for the first time.

Recently, Ditkowski and Gottlieb [16] have derived a particularly simple form for the mth-order ab-

sorbing boundary condition for Maxwell�s equations in terms of normal derivatives at the boundary. In our

notation their result is

ðo=ot þ o=oxÞmp ¼ 0; ðABC�Þm
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a form that only differs from Higdon�s product condition for minimizing reflection near normal incidence

[12] by the replacement of u, the scalar wave unknown, by p. Its equivalence to the condition above is easily

established by applying ðo=ot þ o=oxÞ to the left-hand side of ðABCÞm and using the recursion relation (4.9)

to rewrite the term involving s. This procedure yields 2ðABCÞmþ1. It is straightforward to show from this

expression that the plane wave reflection coefficient for either component of p has magnitude

½ð1� cosðhÞÞ=ð1þ cosðhÞÞ�mþ1
(see, e.g. [13]).

As written above, each ðABCÞm is a an mth-order partial differential equation to be solved on the

boundary, with a lowest-order time derivative term that depends upon whether m is odd or even. This
lowest-order term Sm involves only tangential derivatives of field quantities at the outer boundary. It is

given by

Sm ¼ � 1

4
r2

t

� �ðm�1Þ=2

s ð4:14Þ

for m odd, and by

Sm ¼ � 1

4
r2

t

� �m=2
p ð4:15Þ

for m even. Compare (4.3) and (4.7) for m ¼ 1 and 2, respectively.
5. Well-posedness

A necessary condition for the stability of any numerical time integration scheme for a constant-coeffi-

cient hyperbolic system with boundary condition B is that there be no plane wave solutions bounded in

space and satisfying B that grow exponentially in time. The form of such a growing solution to Maxwell�s
equations at a plane boundary where the outward normal points along the positive x axis is

wðs; kÞ ¼ w0 exp½ik � rþ x
pðs2 þ k2Þ þ st�; ð5:1Þ

where k is a vector in the y–z plane and Re s > 0.

Substituting (5.1) into Maxwell�s equations, one finds that the vectors p and q can be expressed in terms

of the scalars h and e as

p ¼ �½sþpðs2 þ k2Þ�½ikh� ðn� ikÞe�=k2; ð5:2Þ
q ¼ �½s�pðs2 þ k2Þ�½ikhþ ðn� ikÞe�=k2: ð5:3Þ

The mth order boundary condition, by virtue of (4.11), takes a similar form

sCmþ1ðxÞp ¼ 1

2
CmðxÞ½ikh� ðn� ikÞe�; ð5:4Þ

where we have put x ¼ ðk=sÞ2. Combining (5.2) and (5.4), one sees that both the vector component of the

condition along k and the component along (n� k) result in the same scalar condition, which can be written

in the form

Cmþ1ðxÞ½1þ
pð1þ xÞ� þ 1

2
xCmðxÞ ¼ 0; ð5:5Þ

or more suggestively as

pð1þ xÞ ¼ � 1þ 1

2
xCmðxÞ=Cmþ1ðxÞ

� �
: ð5:6Þ
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The bracketed expression on the right-hand side of (5.6) will be recognized from Eq. (4.8) as the mth
approximation to

pð1þ xÞ itself.
If one squares both sides of (4.8) and clears the denominator, the result after using the recursion relation

(4.9) to simplify is

x½Cmþ1ðxÞ�2 � xCmðxÞCmþ2ðxÞ ¼ Oðjxjmþ1Þ: ð5:7Þ

Both products on the left are finite polynomials in x, and the highest-order term is found to be �x ðx=4Þm,
depending upon whether m is odd or even. The only way that their combined order can be bounded by

jxmþ1j as x ! 0 is for the coefficient of every power of x smaller than mþ 1 to vanish. That is, we have

proved indirectly the relation

½Cmþ1ðxÞ�2 ¼ CmðxÞCmþ2ðxÞ þ ð�x=4Þm: ð5:8Þ

Applying this result to the square of (5.6), one then arrives at the condition

xmþ1 ¼ 0; ð5:9Þ

which can be satisfied only by putting k2 ¼ 0. The conditions (5.4) then reduce to

2s2 ¼ 0; ð5:10Þ

showing that there is no root of (5.5) with Re s > 0.

Each ðABCÞm, when written as a function of s and k, is continuous. Consequently, on the surface of the

sphere js2j þ k2 ¼ 1, it has a nonzero minimum (its only zero is isolated at the origin). Kreiss [17] showed

that the existence of such a minimum is sufficient to establish bounds on the solution over the whole domain
that hold over any finite time interval. Engquist and Majda in [2] develop explicit bounds of this type for

solutions of the scalar wave equation, which would apply to p when any of our absorbing boundary

conditions are used to close the system of equations.

Gustafsson [18] and Higdon [12] have pointed out that the direct implementation of derivative boundary

conditions, such as our ðABCÞm for m 6¼ 0 entails the appearance of a weak instability in the solution, and

Trefethen [19] has characterized the types of instability that can arise. The vanishing of B at s ¼ 0, which is

recognized as a generalized eigenvalue of the problem, is found to imply that nonzero data at the outer

boundary can lead to polynomial growth in the interior. Ditkowski and Gottlieb [16] construct an explicit
example of this behavior for their form of the absorbing boundary conditions. However, in [18] Gustafsson

also shows that implementing an integrated form of the boundary conditions can ameliorate the effect of

the instability. This is what we have chosen to do in the following section.
6. Implementation

The motivation for our development of high-order absorbing boundary conditions is to preserve the
inherent solution accuracy of integration schemes that employ a high-order representation for the un-

knowns inside each computational cell. In this section a particular integration scheme of this type due to

Cockburn and Shu [3], the Runge–Kutta discontinuous Galerkin (RKDG) scheme, is adopted to investi-

gate how these boundary conditions may function in practice.

Consider now an unstructured grid covering some finite, convex part of an infinite domain in which

Maxwell�s equations (2.1a)–(2.2b) are satisfied, enclosing a scatterer or source of electromagnetic radiation.

Choose the grid cells that terminate the grid at its outer boundary each to have a single, flat facet on this

boundary, all of their other facets being interior to the grid. On this outer facet, each of the ðABCÞm other
than m ¼ 0 is a partial differential equation relating tangential derivatives of p and s to their time derivatives.
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When highorder spatial representations for the unknowns are available in each grid cell, one can im-

plement any of the absorbing boundary conditions using only information local to the boundary cell in

determining the incoming wave data at the cell boundary. At lowest order, this amounts to requiring

p ¼ n� ½Eþ n�H� ¼ 0 on each boundary facet, where n is the unit normal on that facet. The tangential

fields on the facet in this case are then given from Eq. (3.1a), (3.1b) as

n� E ¼ 1

2
ðpþ q�Þ ¼ 1

2
n� ½E� � n�H��; ð6:1aÞ
n� n�H ¼ 1

2
ðp� q�Þ ¼ � 1

2
n� ½E� � n�H��; ð6:1bÞ

where the minus superscript indicates that the field components are those determined by the spatial rep-

resentation inside the cell.

In the same spirit, for an order m absorbing boundary condition, one can implement the partial dif-

ferential equation as a set of first-order ordinary differential equations for the local variables {PkðtÞ; k ¼ 0

to m� 1} satisfying

dPm�1�k=dt þ
1

2
ðmþ kÞ

� �
jk

� �
S�
m�k ¼ Pm�k; ð6:2Þ

with Pm ¼ 0 and P0 ¼ p, and with initial conditions Pkð0Þ ¼ 0. As before, ½x� denotes the largest integer in x.

Here the source terms S�
m�k are just those given in Eqs. (4.14) and (4.15), evaluated using the spatial rep-

resentation internal to the particular boundary cell. The value of p derived from these equations then

determines the tangential fields on the facet from (6.1a), (6.1b). The set of Pk governed by this process can

be regarded as a particular form of the ‘‘auxiliary functions’’ defined by Hagstrom [10] and others [15,20] in
their implementations of higher order absorbing boundary conditions. Most recently, Givoli and Neta [21]

have carried out such an implementation for semi-infinite rectangular waveguides, starting from the Higdon

product conditions [12,13].

The magnitude of the error incurred by the simplifications inherent in this local implementation for a

faceted convex boundary appears difficult to estimate analytically. However, one can gain some insight by

applying the implementation to unit problems that have a known or calculable answer.

As a test case for our approach, we have selected the pulsed electric dipole example of Grote and Keller

[20], in which the gridded region is a spherical shell, and the dipole is placed inside the interior boundary of
the shell. These authors used an expansion of the solution in spherical harmonics to deduce an exact ab-

sorbing boundary condition at the spherical outer boundary. For each harmonic ðn;mÞ, this condition

requires the solution of a system of first-order ordinary differential equations for 2n auxiliary functions of

time. An approximate absorbing boundary condition is obtained by truncating the infinite sum over

harmonics at a finite order.

For our numerical test the spherical shell has been gridded using nine regular layers of hexahedrons, as

illustrated in Fig. 1. The interior of the shell is composed of six identical sections, each containing

9� 15� 15 hexahedrons. The exterior face of each hexahedron on the outer boundary is flat, while the
innermost face of each hexahedron on the inner boundary is curved to match a spherical surface up to

second order.

To facilitate a comparison with Grote and Keller�s results [20], the dimensions of the shell have been

taken the same as theirs: an inner radius of 50 cm and an outer radius of one meter. The location of the

dipole source (40 cm from the center of the sphere) and the Gaussian shape of its pulse are also the same,

although our pulse width is a few percent narrower. Specifically, we take the Hertz vector P for the dipole

to be given by (see Fig. 2)



Fig. 1. Hexahedral grid for the spherical shell: (a) radial cross-section from one of six identical sectors; (b) grid lines on the inner-

spherical surface.
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Fig. 2. Shape of the transient dipole moment used to derive incident electric and magnetic fields at the inner spherical boundary:

exp�ðt � t0Þ2=r2.
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PðrÞ ¼ ðz=dÞ exp�ðt � d=c� t0Þ2=r2; ð6:3Þ

with r ¼ 0:5 ns and t0 ¼ 3 ns, where z is a unit vector along the line connecting the dipole to the center of

the sphere and d is the distance from the dipole to the field point at r. Expressions for the corresponding

electric and magnetic fields can be found in [22].

Our implementation of the RKDG method [3] for integrating Maxwell�s equations has been described

elsewhere [23]. Essentially, each field component in each cell is expanded in general polynomials of the
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spatial coordinates up to some defined order, and the coefficients in these expansions are taken to be time

dependent. A Riemann problem is solved at each cell interface to determine the tangential fields on the

interface in terms of the coefficients on either side. By an application of Green�s theorem, integrating these

interface fields against each expansion polynomial around the whole cell surface yields a set of ordinary

differential equations in time for the coefficients. These equations are then integrated forward in time using

a standard fourth-order Runge–Kutta scheme.

In the present implementation of the absorbing boundary conditions, the interface fields on the outer

boundary involve only the coefficients of the parent cell and the local value of p. The ordinary differential
equations (6.2) determining p are integrated using the same Runge–Kutta scheme with the same time step as

that for the interior cells. Only the values of Pk (k ¼ 0 to m� 1) at each quadrature point selected for the

surface integration are retained as new time-dependent unknowns.

For the purposes of this test, the spatial expansion in each cell was truncated at terms quadratic in the

coordinates. This gave acceptable accuracy in propagating the dipolar fields throughout the spherical shell

and provided a convenient platform for investigating the efficacy of applying the first three absorbing

boundary conditions.

Figs. 3–5 show the history of the magnetic field at each of three cell-centroid locations inside the
spherical shell (chosen close to those used in [20]). It is not our intention to report on an extensive in-

vestigation of the factors affecting error behavior in the current paper. Rather, we seek only to illustrate

that the qualitative trends with the order of the absorbing boundary condition are consistent with

expectations.

At all three locations the reflected error is about the same magnitude for a given ABC, while the exact

signal decreases by a factor of around 10 from h ¼ 42� to h ¼ 167�. The progressively later time of arrival of

the reflected error as one moves from h ¼ 42� to h ¼ 167� indicates that the strongest reflected signal is

originating near h ¼ 30�, as one expects from the shape of the radiation pattern for this vertical dipole at
z ¼ 40 cm.

Our results for ðABCÞ0 appear quite similar to those of Grote and Keller [20] for the first Peterson

condition (which puts op=ot ¼ 0 at the outer boundary). The decreases in maximum observed error upon

applying ðABCÞ1 and ðABCÞ2 are significant, but they vary with position and do not follow simply from
 

Fig. 3. Azimuthal magnetic field intensity at the point ðr; hÞ ¼ ð0:768; 42:4�Þ for the first three absorbing boundary conditions. The

dipole source is located at ð0:4; 0Þ. Exact solution is shown as a solid line, ðABCÞ0 as lightly dashed, ðABCÞ1 as heavily dashed, and

ðABCÞ2 as dot-dashed lines: (a) first 15 ns; (b) close-up showing the reflected error. Radial distances are quoted in meters.



Fig. 4. Azimuthal magnetic field intensity at the point ðr; hÞ ¼ ð0:768; 137:6�Þ for the first three absorbing boundary conditions.

Conventions are the same as in Fig. 3.

Fig. 5. Azimuthal magnetic field intensity at the point ðr; hÞ ¼ ð0:767; 166:8�Þ for the first three absorbing boundary conditions.

Conventions are the same as in Fig. 3.
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their plane wave reflection coefficients. For ðABCÞ2 this improvement has been obtained at the cost of

adding two new tangential vector unknowns (p and P1) at each quadrature point on the outer boundary for

each of the 1350 cells in the outermost layer. In terms of resource requirements, it is roughly equivalent to

adding field unknowns for another layer of cells beyond this boundary.
While these first tests do not allow generalizations about the behavior of error norms, they do indicate

that the strategy of composing a convex outer boundary from flat facets is successful. High-order repre-

sentations of the field unknowns in each cell can be matched with high-order absorbing boundary condi-

tions of the Engquist–Majda type to reduce reflection errors. However, one should note that, after the

exciting pulse has passed out of the computational domain, there will in general be some residual value for
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the auxiliary functions Pk at each integration point on the outer boundary. These may give rise to long-term

polynomial growth of p on the boundary, and therefore to inward-propagating waves at late times. Some

evidence for this behavior has been found in our simulations, and a thorough investigation of the phe-

nomenon is planned.
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